First-Order Differential Equations

Differential Equations X. Du

- First-Order Ordinary Differential Equations take the from $\frac{dy}{dx} = f(x, y)$
- Slope fields plots the behavior (slope) at certain points using a differential equation
 - **Isoclines** curves along which the slope is constant. Common method for drawing slope fields
- Integral curve
 - Curve that represents a specific solution of an ordinary differential equation.
 - Tangent to slope field lines.
 - Cannot cross each other as long as $\frac{dy}{dx} = f(x, y)$ and $\frac{\partial f}{\partial y}$ are continuous
- Steady State an asymptote that all solutions of the differential equation tend to regardless of initial condition. In solutions to most differential equations, they do not exist.
- Existence Theorem: If $\frac{dy}{dx} = f(x, y)$ is continuous on an open disk containing (x_o, y_o) ,

then there exists a solution to $\frac{dy}{dx} = f(x, y) \operatorname{at}(x_o, y_o)$.

• Corollary (by contraposition): If there is not a solution to $\frac{dy}{dx} = f(x, y)$ at (x_o, y_o) ,

then $\frac{dy}{dx} = f(x, y)$ is discontinuous on an open disk containing (x_o, y_o) .

- Be careful! Inverse and converse are not true!
- Uniqueness Theorem: If $\frac{dy}{dx} = f(x, y)$ and $\frac{\partial f}{\partial y}$ are continuous on an open disk containing

 (x_o, y_o) , then there exists one and only one solution to $\frac{dy}{dx} = f(x, y)$ at (x_o, y_o) .

• Corollary (by contraposition): If there is not exactly one solution to $\frac{dy}{dx} = f(x, y)$

at
$$(x_o, y_o)$$
, then either $\frac{dy}{dx} = f(x, y)$ or $\frac{\partial f}{\partial y}$ (or both $\frac{dy}{dx} = f(x, y)$ and $\frac{\partial f}{\partial y}$) is

discontinuous on an open disk containing (x_o, y_o) .

- Be careful! Inverse and converse are not true!
- Applications:
 - o Exponential growth and decay models
 - Projectile motion with drag
 - RC circuits and RL circuits
 - Mixing and diffusion